Tracing orbital images on ultrafast time scales – Publication by B6 (Höfer/Wallauer) and A12 (Tautz/Bocquet/Kumpf) in Science
Robert Wallauer and coworkers combined a high harmonic laser source with an electron momentum microscope to record orbital images of the charge transfer at an organic/metal interface with femtosecond time resolution.
The microscopic charge-transfer dynamics across molecular interfaces is reflected in the population of electronic orbitals. These were, for the first time, directly monitored with ultrafast time resolution in a joint experimental effort of B6 (Höfer/Wallauer) in Marburg and A12 (Tautz/Bocquet/Kumpf) in Jülich. The experiment records the full two-dimensional intensity distribution of photoemitted electrons in momentum space in a femtosecond pump-probe scheme. Real-space electron distributions and photoemission momentum maps, called orbital tomographs, are related by a Fourier transform.
The model interface PTCDA/CuO/Cu(100) exhibits two distinct excitation pathways for the PTCDA molecule. The parallel component of the electric field of the pump pulse makes a direct HOMO-LUMO transition, while the perpendicular component transfers an electron from the metal across the atomically thin CuO spacer into the molecular LUMO. Once excited, the LUMO decays with a lifetime of 250 fs, independent of the excitation pathway. Real-space electron distributions and photoemission momentum maps, called orbital tomographs, are related by a Fourier transform (Photoemission Orbital Tomography, Wikipedia).
In the future, the new experimental capability is expected to facilitate the microscopic understanding of charge-transfer and exciton-formation processes at several other classes of organic heterointerfaces with unprecedented detail, including interfaces between 2D semiconductors and layered organic molecular structures.
Informational Material
– Joint press release of the universities of Marburg and Graz and the FZ Jülich (available in English and German).
– News, Philipps-Universität Marburg (in German).
– News, Universität Graz, Österreich (in German).
Publication
R. Wallauer, M. Raths, K. Stallberg, L. Münster, D. Brandstetter, X. Yang, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F.C. Bocquet, F.S. Tautz, U. Höfer
Tracing orbital images on ultrafast time scales
Science 371 (2021) 1056 DOI:10.1126/science.abf3286
Contact
Prof. Dr. Ulrich Höfer Philipps-Universität Marburg SFB 1083, project B6 Tel.: +49 6421 28-24215 |
Prof. Dr. Stefan Tautz FZ Jülich PGI, Experimental Physics, project A12 Tel.: +49 (0)2461 61-4561 |